ÉTUDE THERMODYNAMIQUE DE LA COMPLEXATION DE L'ARGENT PAR LA THIOURÉE ET CERTAINS DE SES DÉRIVÉS ALKYLSUBSTITUÉS

OCTAVIAN ENEA ET GUY BERTHON

Laboratoire de Thermodynamique Chimique et Electrochimie de l'Université, 40, Avenue du Recteur Pineau, 86022 Poitiers (France) (Recu le 19 juillet 1972)

ABSTRACT

In order to find support for the validity of the hypothesis proposed by one of us regarding the different natures of the bonds in the four successive complexes formed between Ag^+ and thiourea, the corresponding enthalpies are verified by direct calorimetry.

Furthermore, because the influence of substituent groups on the nitrogen atoms may help to characterize the donor atom, the calorimetric enthalpies and potentiometric free energies of complexation between Ag⁺ and N-methylthiourea, N,N'dimethylthiourea and N,N'-diethylthiourea have also been determined at 25°C, in aqueous medium of ionic strength $\mu = 0.5 M \text{ KNO}_3$.

RÉSUMÉ

Afin de mieux étayer la validité de l'hypothèse de l'un de nous sur les natures différentes des liaisons engendrées dans les quatre complexes successifs du système Ag-thiourée, les enthalpies de réaction correspondantes ont été réétablies par voie calorimétrique directe.

De plus, l'influence de groupements substitués sur les seuls atomes d'azote pouvant *a priori* faciliter la discrimination de l'atome donneur, les enthalpics libres (par voie potentiométrique) et les enthalpies (par voie calorimétrique) de la complexation de l'argent par la N méthylthiourée, la NN' diméthylthiourée et la NN' diéthylthiourée ont également été déterminées à 25°C, en milieu aqueux de force ionique $\mu = 0.5 M \text{ KNO}_3$.

INTRODUCTION

Une étude assez récente de l'un de nous¹ a mis en évidence la coexistence en solution de quatre complexes successivement engendrés par l'argent avec la thiourée (T).

La détermination de leurs constantes de stabilité respectives, à différentes

températures, avait conduit aux évaluations des enthalpies et des entropies de complexation correspondantes. Une comparaison avait été faite avec les valeurs relevées dans la littérature pour le troisième complexe, seul jusqu'alors étudié : l'enthalpie obtenue $\Delta H_3 = -16,5\pm4$ kcal mol⁻¹ recoupait assez bien la valeur $\Delta H_3 = -20$ kcal mol⁻¹ déduite par Toropova et Kirillova² au moyen d'un procédé analogue, mais s'écartait de manière importante de la valeur $\Delta H_3 = -30,7$ kcal mol⁻¹ qu'avaient déterminée Yatsimirskii et Astasheva³ par calorimétrie directe.

Une analyse plus approfendie des conditions expérimentales d'accès à ce dernier résultat montre toutefois que le désaccord avec les deux premiers n'est en réalité qu'apparent car, comme nous le verrons plus loin, ses auteurs attribuent à tort au troisième complexe la chaleur mesurée dans un domaine de concentrations (thiourée 1 M; Ag⁺ 0,2 M) où le quatrième est « thermiquement » prépondérant, la valeur notée ΔH_3 devant en fait être comparée à $\Delta H_4 = -24 \pm 6$ kcal mol⁻¹ (réf. 1).

Tenant compte, d'une part de certaines considérations sur les structures électroniques, déjà avancées pour le troisième complexe⁴, d'autre part et plus généralement de divers arguments d'ordres conjointement spectroscopique et thermodynamique⁵, concluant à la prédominance, dans l'enthalpie libre, du terme entropique pour une liaison à l'oxygène mais du terme enthalpique pour une liaison à l'azote, l'hypothèse de liaisons au soufre dans le premier et le troisième complexes, mais à l'azote dans le second et le quatrième, avait dès lors été suggérée¹.

Les résultats obtenus depuis par Christensen et ses collaborateurs sur les complexes Hg(CN)₂T ($\Delta H_1 = -1.5 \pm 0.1$ kcal mol⁻¹; $\Delta S_1 = 4 \pm 0.3$ u.e.) et Hg(CN)₂T₂ ($\Delta H_2 = -7.9 \pm 0.2$ kcal mol⁻¹; $\Delta S_2 = -23.8 \pm 0.6$ u.e.) semblent d'ailleurs confirmer une alternance analogue pour les complexes du mercure en milieux aqueux et eauformamide⁶.

Toutefois, les grandeurs thermiques issues de déterminations de constantes de stabilité à différentes températures n'étant généralement pas susceptibles d'une excellente précision, la discrimination effective de la nature de l'atome donneur dans les liaisons successivement contractées entre l'argent et la thiourée sollicitait l'étude du même système par voie calorimétrique directe¹.

De plus, certaines conclusions ayant pu être déduites de l'examen des valeurs des constantes de basicité de la thiourée et de quelques-uns de ses dérivés en milieu eau-dioxanne⁷, il nous a semblé qu'une étude thermodynamique complète de la complexation de l'argent par des dérivés alkylés de ce coordinat, substitués exclusivement sur l'azote, pouvait faciliter la dite discrimination: c'est pourquoi, nous avons étendu cette étude aux dérivés N méthylthiourée (N.MT), NN' diméthylthiourée (DMT) et NN' diéthylthiourée (DET).

MESURES POTENTIOMÉTR'QUES

Nous n'avons repris aucune mesure de ce genre sur le système argent-thiourée, qui avait fait l'objet de notre étude antérieure¹. La méthode potentiométrique ici adoptée pour les systèmes argent-dérivés T a été très analogue.

Produits, technique et appareillage

La NMT et la DET étaient de marque Fluka, la DMT de marque Aldrich et le nitrate de potassium de marque Merck. Tous ces composés possédant la qualité « pour analyses », ils n'ont donc pas fait l'objet de purifications ultérieures et ont été utilisés tels quels.

La technique expérimentale est celle des électrodes métal-complexes¹ : elle consiste à mesurer les écarts entre tensions réversibles de cellules couplées de types respectifs

$$Ag|Ag^+, KNO_3 \ (\mu = 0.5 M) \|KNO_3 \ (sat)\|KCl \ (sat)\|Hg_2Cl_2-Hg$$
 (1)

$$Ag|[Ag(A)_{\bar{n}}]^{+}, A, KNO_{3}(\mu = 0, 5 M)||KNO_{3}(sat)||KCl(sat)||Hg_{2}Cl_{2}-Hg$$
(2)

A représentera ici successivement les coordinats NMT, DMT et DET. D'autre part, pour simplifier le libellé de la cellule (2), le nombre moyen de coordinats \bar{n} y symbolise la coexistence des espèces simultanées d'ordres n = 1, 2, 3, 4.

Les appareils utilisés (pH mètre, électrodes, thermostat à circulation) sont ceux déjà mentionnés dans le mémoire précédent¹ : nous ne reviendrons donc pas sur leurs caractéristiques.

Notons cependant que le contrôle à $\pm 0,05$ °C près de la température de 25 °C et la précision de $\pm 0,05$ mV sur l'échelle du pH mètre, ont permis une reproductibilité relative de l'ordre de 1% pour les mesures de potentiel.

Néanmoins, comme pour le système argent-thiourée, l'étendue du domaine des concentrations en coordinats A à l'équilibre avec l'une ou l'autre des espèces complexées est très large : il a donc été nécessaire d'utiliser deux gammes distinctes de teneurs en A, de sorte que les déterminations alternatives des constantes tantôt β_1 et β_2 , tantôt β_3 et β_4 , par la méthode de Leden y soient les plus précises possibles.

Dans tous les cas, la concentration globale de l'ion Ag^+ a pu être maintenue effectivement négligeable en regard de celles des coordinats considérés, ce qui a beaucoup simplifié les calculs.

Résultats

Les résultats ainsi obtenus sont rassemblés dans les Tableaux 1 et 2 respectivement relatifs aux faibles et aux fortes teneurs en coordinats.

Les concentrations globales de ces derniers, que l'on peut assimiler à leurs concentrations d'équilibre (en raison de la remarque plus haut) y sont indiquées, conjointement aux écarts correspondants entre tensions réversibles des cellules (1) et (2).

Le Tableau 3 groupe les constantes globales de stabilité calculées pour ces systèmes au moyen de la méthode de Leden.

MESURES CALORIMÉTRIQUES

Produits, technique et appareillage

La thiourée a été de même provenance que celle utilisée lors de la précédente étude¹, c'est-à-dire de marque Koch-Light, qualité « Puriss » supérieure à 99%.

TABLEAU 1

RÉSULTATS DES MESURES POTENTIOMÉTRIQUES RELATIVES AUX FAIBLES TENEURS EN COORDINAT $C_{Ag} = 10^{-6} M.$

C _A × 10 ⁵ (mol l ⁻¹)	$E_1 - E_2 (mV)$ $[A = NMT]$	$E_1 - E_2 (mV)$ $[A = DMT]$	$E_1 - E_2 (mV)$ $[A = DET]$
1.961	118.8	69.5	74.2
3,846	140,3	108,0	105,6
5,660	154,8	120,8	123,8
7,407	164,2	131,6	135,2
9,091	:71,6	139,5	144,1
10,714	177,9	146,3	151,5
12,281	183,2	151,8	157,8
13,793	187,9	156,8	163,3
16,566	195,6	165,1	172,5
20,000	203,3	173,0	181,6
23,077	209,6	179,7	188,9
25,926	214,6	185,2	195,0
28,571	219,0	189,8	200,2

TABLEAU 2 RÉSULTATS DES MESURES POTENTIOMÉTRIQUES RELATIVES AUX HAUTES TENEURS EN COORDINAT $C_{Ag} = 10^{-4} M.$

$C_{A} \times 10^{2}$ (mol l ⁻¹)	$E_1 - E_2 (mV)$ $[A = NMT]$	$E_1 - E_2 (mV)$ $[A = DMT]$	$E_1 - E_2 (mV)$ $[A^* = DET]$	$C_{A^{\bullet}} \times 10^{3}$ (mol l^{-1})
0.405	377 1	356.8	275.9	0 990
0,980	473.9	403 5	320 1	1 961
1,456	453.1	432.1	347.2	2,913
1.923	474.8	453,0	366.8	3.846
2,381	491,3	469,0	382,0	4,762
2,833	505,4	485,3	394,7	5,660
3,271	517,1	499,3	405,3	6,542
4,545	544,9	527,9	423,3	8,257
5,357	558,9	542,3	430,5	9,091
6,140	570,6	554,3	443,4	10,714
6,895	580,4	564,6	453,7	12,281
8,333	596,6	581,4	462,5	13,793
10,000	613.1	597,9	477,0	16,666
11,538	525,9	611,0	491,6	20,000
12,963	636,4	621.8	501,9	23,077
14,286	645,5	631,0	519,9	28,571

Les dérivés NMT, DMT et DET ont été ceux employés pour les mesures potentiométriques, de même que le nitrate de potassium assurant une force ionique uniforme 0,5 M.

TABLEAU 3 CONSTANTES GLOBALES DE STABILITÉ DES COMPLEXES D'ARGENT À 25°C $\mu = 0,5 M$ KNO₃.

	Ag-NMT	Ag-DMT	Ag-DIT
$\log \beta_1$	6,70	6,09	6,00
$\log \beta_2$	10,61	10,15	10,30
$\log \beta_3$	13,04	12,74	13,33
$\log \beta_{4}$	14,06	13.85	14,15

Les expériences, effectuées à 25°C, consistaient en titrages d'une substance initialement introduite dans la cellule expérimentale, par un réactif ajouté de manière discontinue au moyen d'une burette à piston Prolabo à lecture numérique, de précision absolue 0,001 ml. Le réactif a été successivement pour chaque système, la solution d'argent et celle du coordinat.

Les concentrations totales de chacune de ces espèces ont été choisies au préalable⁸, de manière à ce que la concentration d'équilibre du coordinat corresponde à une zone de la courbe de formation où les quatre complexes coexistent effectivement dans la solution étudiée.

Deux appareils ont été utilisés pour les mesures : un ensemble de titrage calorimétrique de précision LKB 8700-2 et un calorimètre CRMT-Setaram, dont nous avons ailleurs décrit les modalités d'emploi^{9,10} et comparé les performances¹¹. Les chaleurs globales dégagées par les réactions étudiées ont toujours été corrigées des chaleurs de dilution des réactifs, mesurées dans les mêmes conditions expérimentales.

Enfin, les enthalpies globales de complexation ont été calculées au moyen d'un programme d'ordinateur spécialement mis au point⁸.

Résultats

Les données expérimentales obtenues sont rassemblées dans le Tableau 4, qui comporte successivement le volume de la solution, les concentrations globales des espèces réagissantes, les chaleurs dégagées Q, les enthalpies moyennes de complexation $\overline{\Delta H}$ expérimentales et leurs valeurs recalculées à partir des résultats fournis par l'ordinateur, pour chacun des systèmes successivement étudiés.

Le Tableau 5 consigne toutes les grandeurs thermodynamiques, globales et étagées, des complexations envisagées : les enthalpies issues des mesures calorimétriques, les enthalpies libres calculées à partir des constantes déterminées en potentiométrie et les entropies qui s'en déduisent. Il est à noter qu'en ce qui concerne le système Ag-thiourée, les valeurs trouvées antérieurement par l'un de nous¹ y figurent également à titre comparatif.

DISCUSSION

Les valeurs ici calculées des enthalpies de formation des complexes de la thiourée sont toutes inférieures (en valeur algébrique) à celles déterminées auté-

TABLEAU 4
RÉSULTATS DES MESURES CALORIMÉTRIQUES Q est exprimé en calories, $\overline{\Delta H_{aug.}}$ et $\overline{\Delta H_{cale.}}$ le sont en cal mol ⁻¹ .

2	$C_A \times 10^4$	CA8 × 103	A = thiou	rée		VN = V	łT		A = DM1	E		A = DET		
(1111)	(- 1 1011)	(- 1 10M)	0	<i>KH</i> •ιр.	ΔH _{calo} .	6	ΔR.1.p.	$\Delta H_{cato.}$	Ø	<u>Δη_{evp.}</u>	ΔH _{cale} .	6	AHerp.	<u> X</u> П _{са10.}
95,4	0,4193	1,9916	3,1548	16604	16604	3,4696	18261	18260	1	!	Ī	I	I	1
96	1,0417	1,9792	4,2094	22155	22146	4,3149	22710	22711	4,0491	21311	21314	I	ł	l
97	2,0619	1,9588	4,4112	23217	23220	4,5129	23752	23742	4,2902	22580	22573	3,4772	18301	18301
98	3,0612	1,9388	4,5144	23760	23797	4,6512	24480	24492	4,4165	23245	23213	4,0533	21333	21328
66	4,0404	1,9192	4,5982	24201	24251	4,7713	25112	25109	4,5064	23718	23744	4,1283	21728	21738
100	5,0000	1,9000	4,6797	24630	24637	4,8714	25639	25626	4,5999	24210	24203	4,1612	21901	21912
101	5,9406	1,8812	4,7786	25150	24975	4,9489	26047	26068	4,6702	24580	24604	4,1942	22075	22041
102	6,8627	1,8627	4,7895	25208	25274	5,0274	26460	26449	4,7424	24960	24957	4,2066	22140	22154
96	59,375	1,0417	3,0010	30010	30010	3,1092	31092	31067	3,0401	30401	30514	2,6830	26830	26816
97	58,763	2,0619	5,9944	29972	29983	6,2114	31057	31047	6,0803	30402	30497	5,3520	26760	26750
9 8	58,163	3,0612	8,9850	295.50	29956	9,3012	31004	31026	9,1125	30375	30480	8,0017	26672	26615
8	57,576	4,0404	11,9608	29902	29929	12,3680	30920	31006	12,1444	30361	30463	10,6416	26604	26615

1 1 1

> : (

> | |

> :

Ę

۱

52

rieurement¹. Mais, compte tenu des incertitudes assez importantes affectant les grandeurs déduites de l'isochore de Van t'Hoff, on peut admettre que leur concordance est acceptable.

TABLEAU 5

GRANDEURS THERMODYNAMIQUES GLOBALES ET ÉTAGÉES DES COMPLEXES D'ARGENT À 25°C

 $\mu = 0.5 M \text{ KNO}_3$. Les enthalpies libres et enthalpies sont exprimées en kcal mol⁻¹, les entropies en cal deg⁻¹ mol⁻¹; les valeurs affectées d'une astérisque proviennent d'une étude antérieure⁴.

ΔX _{s,m}	Ag-thiourée	Ag-NMT	Ag-DMT	Ag-DET
$-\Delta G_1$	9,618	9,153	8,306	8,197
$-\Delta G_{1,2}$	4,877	5,342	5,555	5,874
$-\Delta G_2$	14,495	14,495	13,861	14,071
$-\Delta G_{2,3}$	3.046	3,320	3,544	4,140
$-\Delta G_3$	17,541	17,815	17,405	18,211
$-\Delta G_{3,4}$	1,066	1,393	1,522	1,115
$-\Delta G_4$	18,607	19,208	18,927	19,326
$-\Delta H_1$	2,6±0,3 (0)*	1,6±0,3	о	$1,3\pm0,2$
$-\Delta H_{1,1}$	19,33 (16,5±4)*	20,76	21,80	20,19
$-\Delta H_2$	$21,93 \pm 0.13$	$22,36 \pm 0.08$	$21,80 \pm 0.08$	$21,49 \pm 0.06$
$-\Delta H_{2,3}$	1,13 (0)*	0,41	0,35	0,29
$-\Delta H_3$	23,06±0,05	22,77±0,03	$22,15\pm0,04$	$21,78\pm0,02$
$-\Delta H_{3,4}$	8,93 (7,5±2)•	9,64	9,46	9,04
$-\Delta H_{L}$	31,99±0,04	32,41±0,02	31,61±0,04	30,82±0,03
ΔS_1	23,5±1,0 (32)*	$25,3 \pm 1,0$	27,85	23.1 ± 0.7
$\Delta S_{1,2}$	-48,5 (-38,5)*	-51,7	- 54,45	-48,0
ΔS_2	$-25,0\pm0,5$	$-26,4\pm0,3$	$-26,6\pm0,3$	$-24,9\pm0,2$
Δ.S _{2.3}	6,5 (9,45)*	9,8	10,7	12,9
ΔS_3	$-18,5\pm0,2$	$-16,6\pm0,1$	$-15,9\pm0,1$	$-12,0\pm0,1$
ΔS _{3.4}	-26,4 (-21,6)*	-27,7	-26,6	-26,55
ΔS_4	-44,9±0,1	-44,3±0,1	$-42,5\pm0,1$	-38,55±0,1

De plus, nos nouvelles valeurs recoupent plus étroitement que les précédentes celles des auteurs antérieurs^{2,3}. Il est clair, toutefois, d'après la Fig. 1 qui représente la courbe de formation thermique du système Ag-thiourée conjointement aux degrés de formation de chacun des complexes, que Yatsimirskii et Astasheva³, bien que travaillant dans un domaine de concentrations en thiourée où le troisième complexe était sans doute prépondérant (voir plus haut), enregistraient, en fait, le dégagement de chaleur dû à la formation du quatrième, qu'ils n'avaient pas mis en évidence analytiquement.

Les valeurs enthalpiques et entropiques dont nous disposons maintenant bénéficiant d'une précision satisfaisante, la discussion de la nature des atomes donneurs et de la structure de chacun des complexes successivement engendrés entre l'argent et la thiourée peut utilement être reprise.

Fig. 1. Courbe de formation thermique du système Ag-thiourée et degrés de formation de chacun des complexes.

Si l'on tient toujours pour valables les considérations d'Uusitalo sur les coordinations à l'oxygène⁵, on peut, en raison de la similitude de cet atome avec celui du soufre, admettre *a priori* la formation d'une liaison Ag-S dans le premier complexe. D'ailleurs, une étude comparative des enthalpies de complexation de polyamines et des thioamines correspondantes fait état de grandeurs du même ordre pour des liaisons au soufre : ainsi, la valeur $\Delta H = -2$ kcal mol⁻¹ affectant la liaison Cu-S étayerait notre point de vue¹².

L'enthalpie de formation du deuxième complexe correspond approximativement à l'établissement de deux liaisons $Ag-N^{13}$, la liaison Ag-S formée dans le premier étant alors rompue.

La valeur de l'enthalpie de formation du troisième complexe suscite la présomption de l'addition d'une liaison Ag-S, sans rupture des liaisons Ag-N établies dans le deuxième. Une telle conclusion semblerait infirmer la mise en évidence par voie spectroscopique, selon Owczarek et Soloniewicz¹⁴, des seules liaisons Ag-S dans le cristal de $[Ag(T)_3]CrO_4$. Il se pourrait cependant que les liaisons Ag-N n'aient pu

54

être identifiées par ces auteurs; l'hypothèse de liaisons de cette nature est en effet récente et peu connue si l'on se réfère au dernier en date des ouvrages sur ce domaine¹². De plus, un complexe comportant Jeux liaisons Ag-N et une liaison Ag-S pourrait bénéficier d'une structure plus équilibrée qu'un complexe à trois liaisons Ag-S, des interactions entre groupements fonctionnels périphériques n'étant pas *a priori* exclues. La valeur du ΔH de formation du complexe de Cu²⁺ avec NH₂-CH₂-O-CH₂-CH₂-S-CH₂-CH₂-NH₂, qui rend compte de la coexistence de deux liaisons Cu-N avec une liaison Cu-S¹², évoque d'ailleurs une possibilité de ce genre.

Enfin, l'enthalpie étagée $\Delta H_{3,4}$ semble attribuable à la formation d'une liaison Ag-N supplémentaire, sans aucune rupture de liaison précédemment établie.

Les seules formes successives en accord avec les grandeurs thermodynamiques ici obtenues seraient donc les suivantes, indépendamment de leurs configurations stériques

Considérons maintenant l'influence de la présence de groupements substituants sur les atomes d'azote de la molécule de thiourée.

Si l'on exclut l'examen comparatif des grandeurs de formation du premier complexe de chaque système, en raison de leur précision médiocre due à l'instabilité chimique de telles espèces aux faibles concentrations en coordinat, celui des autres valeurs appelle certaines remarques.

D'une manière assez générale, seule l'enthalpie libre $\Delta G_{3,4}$ du système Ag-DET faisant exception, les enthalpies libres étagées décroissent en valeurs algébriques dans l'ordre

T>NMT>DMT>DET,

ce qui rend compte du renforcement correspondant de la stabilité des espèces de types (II), (III), (IV). Cet ordre avait d'ailleurs été observé pour les enthalpies libres de protonation en milieu eau-dioxanne⁷, qui décroissent selon

 $T(-2,77 \text{ kcal mol}^{-1}) > NMT(-3,96 \text{ kcal mol}^{-1}) > DET(-3,98 \text{ kcal mol}^{-1});$

on retrouve donc ici une règle bien connue de parallélisme entre basicité et stabilité¹⁵.

Pour ce qui concerne séparément les termes enthalpiques et entropiques, ceux relatifs aux liaisons Ag-N ne subissent pas de variations systématiques suffisamment importantes pour donner lieu à une interprétation non équivoque.

Toutefois, l'évolution des termes $\Delta H_{2,3}$ et $\Delta S_{2,3}$ est plus significative: la présence sur l'atome d'azote des groupements substituants respectifs M, DM et DE

tend à accroître l'enthalpie en diminuant la solidité de la liaison Ag-S du point de vue électrique; par contre, l'encombrement stérique croissant des groupements considérés dans l'ordre ci-dessus provoque une expulsion de plus en plus importante des molécules d'eau solvatantes, suscitant ainsi une augmentation substantielle du terme entropique, qui dépasse en grandeur celle du terme enthalpique, au profit d'une stabilité croissante des espèces (III) dans l'ordre précédent.

BIBLIOGRAPHIE

- I G. Berthon et C. Luca, Bull. Soc. Chim. Fr., (1969) 432.
- 2 W. F. Toropova et L. S. Kirillova, Zh. Neorg. Khim., 5 (1960) 575.
- 3 K. B. Yatsimirskii et A. A. Astasheva, Zh. Fiz. Khim., 27 (1953) 1539.
- 4 W. S. Fyfe, J. Chem. Soc., (1955) 1032.
- 5 E. Uusitalo, Ann. Acad. Sci. Fennicae, 87 (1967) 62.
- 6 R. M. Izatt, C. H. Bartholomew, C. E. Morgan, D. J. Eatough et J. J. Christensen, Thermochim. Acta, 2 (1971) 313.
- 7 J. L. Walter, J. A. Ryan et T. J. Lane, J. Amer. Chem. Soc., 78 (1956) 5560.
- 8 G. Berthon et G. Valensi, Bull. Soc. Chim. Fr., (1972) 479.
- 9 G. Berthon, O. Enez et Y. Bokra, Thermochim. Acta, 4 (1972) 441.
- 10 G. Berthon et O. Enea, Thermochim. Acta, 6 (1973) 57.
- 11 O. Enea et G. Berthon, C.R. Acad. Sci., C 274 (1972) 1968.
- 12 S. F. Ashcroft et C. T. Mortimer, Thermochemistry of Transition Metal Complexes, Academic Press, London, 1970.
- 13 J. J. Christensen et R. M. Izatt, Handbook of Metal Ligand Heats, M. Dekker, New York, 1970.
- 14 A. Owczarek et R. Soloniewicz, Rocz. Chem., 44 (1970) 29.
- 15 Y. Bokra et G. Berthon, J. Chim. Phys., (1972) 1159; (1972) 1165.